provided all the resistance values and other temperatures are known. ${ }^{3}$ Consider

$$
\begin{align*}
& v_{0}=\frac{Z_{0}}{Z_{T}}\left[i_{0}\left(Z_{1}+Z_{2}\right)-i_{1} Z_{1}-i_{2} Z_{2}\right] \tag{2a}\\
& v_{2}=\frac{Z_{2}}{Z_{T}}\left[i_{0} Z_{0}+i_{1} Z_{1}-i_{2}\left(Z_{1}+Z_{0}\right)\right] \tag{2b}
\end{align*}
$$

where

$$
Z_{T}=Z_{0}+Z_{1}+Z_{2}, \quad Z_{0}=R_{0} /\left(1+j \omega C_{0} R_{0}\right), \text { etc. }
$$

and v_{0}, i_{0}, etc. are complex vectors. If one multiplies v_{0} and v_{2} and takes the time average over the product, then one forms:
(3) $\operatorname{Re}\left(\overline{v_{0} v_{2}^{*}}\right)=\operatorname{Re}\left\{\left\lvert\, \frac{Z_{0} Z_{2}^{*}}{\left|Z_{T}\right|^{2}}\left[\overline{\left.i_{0}\right|^{2}} Z_{0}^{*}\left(Z_{1}+Z_{2}\right)+\overline{\left|i_{2}\right|^{2}} Z_{2}\left(Z_{0}^{*}+Z_{1}^{*}\right)-\overline{\left|i_{1}\right|^{2}}\left|Z_{1}\right|^{2}\right]\right.\right\}$,
where

$$
\overline{\left.i_{0}\right|^{2}}=4 k T_{0} d f / R_{0}
$$

(the Planck factor is assumed to be unity), similarly $\overline{\left.i_{1}\right|^{2}}$ and $\overline{\left|i_{2}\right|^{2}}$. The time average of the products $\operatorname{Re}\left(\overline{\bar{i}_{0} i_{i}^{*}}\right)$, etc. are zero because the resistors are independent noise sources. The product $\operatorname{Re}\left(\overline{\left.v_{0} v_{0}\right)_{0}}\right)$ appearing in equation (3) corresponds to the direct multiplication of the physical voltages v_{0} and v_{2}. From equation (3) one sees that if either $R_{0} C_{0}=R_{1} C_{1}=R_{2} C_{2}$ or $\left(\omega R_{n} C_{n}\right)^{2} \ll 1$ the product $\operatorname{Re}\left(\overline{v_{0} v_{2}^{*}}\right)$ can have a positive or a negative sign provided $T_{1}>\left(T_{0}+T_{2}\right)$. For either of the above conditions the value of R_{1} required to make $\operatorname{Re}\left(\overline{v_{0} v_{2}^{*}}\right)=0$ can be calculated from equation (3):

$$
\begin{equation*}
R_{1}=\frac{T_{0} R_{2}+T_{2} R_{0}}{T_{1}-T_{0}-T_{2}} . \tag{4}
\end{equation*}
$$

In this experiment R_{0} and R_{2} were both kept in the helium bath so that $T_{0}=T_{2} . R_{2}$ and R_{0} were matched to better than $1 / 2 \%$, and T_{1} was in an isothermal bath at room temperature. If T_{1} and the resistances are measured, T_{0} can be calculated from

$$
\begin{equation*}
T_{0}=T_{1} \frac{R_{1}}{R_{0}+2 R_{1}+R_{2}} . \tag{5}
\end{equation*}
$$

II. THE THERMOMETER AND EXPERIMENTAL PROCEDURES

The first requirement for an absolute noise thermometer of the kind described above is to find some resistors which are stable at liquid helium temperatures, whose values are preferably reproducible for several experiments, which produce no noise in addition to thermal noise, and whose resistive component

